The Cre-lox system is one of the most widely used methods for lineage-specific and inducible genome editing in vivo. However, incomplete penetrance and off-target effects due to transient promoter expression in a stem or pluripotent precursor cell can be problematic and difficult to detect, especially if the target gene is not normally present in the fully differentiated but off-target cells. Yet, the loss of the target gene through the transient expression of Cre may impact the differentiation of those cells by virtue of transient expression in a precursor population. In these situations, off-target effects in an unknown precursor cell can, at best, complicate conclusions drawn from the model, and at worst, invalidate all data generated from that knockout strain. Thus, identifying Cre-driver promoter expression along entire cell lineages is crucial to improve rigor and reproducibility. As an example, transient expression in an early precursor cell has been documented in a variety of Cre strains such as the Tie2-based Cre-driver system that is used as an "endothelial cell-specific" model 1. Yet, Tie2 is now known to be transiently expressed in a stem cell upstream of both hematopoietic and endothelial cell lineages. Here, we use the Tie2 Cre-driver strain to demonstrate that due to its ubiquitous nature, plasma membrane glycans are a useful marker of both penetrance and specificity of a Cre-based knockout.
The IgG antibody class forms an important basis of the humoral immune response, conferring reciprocal protection from both pathogens and autoimmunity. IgG function is determined by the IgG subclass, as defined by the heavy chain, as well as the glycan composition at N297, the conserved site of N-glycosylation within the Fc domain. For example, lack of core fucose promotes increased antibody-dependent cellular cytotoxicity, whereas α2,6-linked sialylation by the enzyme ST6Gal1 helps to drive immune quiescence. Despite the immunological significance of these carbohydrates, little is known about how IgG glycan composition is regulated. We previously reported that mice with ST6Gal1-deficient B cells have unaltered IgG sialylation. Likewise, ST6Gal1 released into the plasma by hepatocytes does not significantly impact overall IgG sialylation. Since IgG and ST6Gal1 have independently been shown to exist in platelet granules, it was possible that platelet granules could serve as a B cell-extrinsic site for IgG sialylation. To address this hypothesis, we used a platelet factor 4 (Pf4)-Cre mouse to delete ST6Gal1 in megakaryocytes and platelets alone or in combination with an albumin-Cre mouse to also remove it from hepatocytes and the plasma. The resulting mouse strains were viable and had no overt pathological phenotype. We also found that despite targeted ablation of ST6Gal1, no change in IgG sialylation was apparent. Together with our prior findings, we can conclude that in mice, neither B cells, the plasma, nor platelets have a substantial role in homeostatic IgG sialylation.
The sialic acid-binding immunoglobulin-like lectins (Siglecs) are a family of receptors expressed widely on cells of the hematopoietic system. Siglecs recognize terminal sialic acid residues on glycans and often initiate intracellular signaling upon ligation. Cells can express several Siglec family members concurrently with each showing differential specificities for sialic acid linkages to the underlying glycan as well as varied hydroxyl substitutions, allowing these receptors to fine tune downstream responses. Macrophages are among the many immune cells that express Siglec family members. Macrophages exhibit wide diversity in their phenotypes and functions, and this diversity is often mediated by signals from the local environment, including those from glycans. In this review, we detail the known expression of Siglecs in macrophages while focusing on their functional importance and potential clinical relevance.
IgG is a key mediator of immune responses throughout the human body, and the structure of the conserved glycan on the Fc region has been identified as a key inflammatory switch regulating its downstream effects. In particular, the absence of terminal sialic acid has been shown to increase the affinity of IgG for activating Fc receptors, cascading the inflammatory response in a variety of diseases and conditions. Previously, we have shown that IgG sialylation is mediated by B cell-extrinsic processes. Here, we show that the FcRn-mediated recycling pathway within endothelial cells is a critical modulator of IgG sialylation. Building a deeper understanding of how IgG sialylation is regulated will drive the development of novel therapeutics which dynamically tune IgG functionality in vivo.
The Cobbohydrates Lab
Copyright © 2024 The Cobbohydrates Lab - All Rights Reserved.
Powered by GoDaddy
We use cookies to analyze website traffic and optimize your website experience. By accepting our use of cookies, your data will be aggregated with all other user data.